Tuesday, July 29, 2008

More evidence for the GZK cosmic ray cut-off

Last December we had a rather detailed discussion of ultrahigh-energy cosmic rays (UHECRs). The occasion for this was an important announcement of cosmic ray observations from the Pierre Auger Observatory. Science magazine ranked this result as the third most important "breakthrough" of 2007. (See here.)

The results reported then actually included a variety of important tentative conclusions from the data. Two in particular stood out. One was a statistical analysis that indicated some likelihood that the UHECRs had originated in the nuclei of active galaxies. This conclusion is still controversial, as the statistics involved have been disputed.

A second conclusion seems to be more secure, and has since received additional confirming evidence. This is the conclusion that something known as the GZK cutoff has been verified.

This predicted phenomenon is rather easy to understand at a general level, because it rests on well-known assumptions of special relatively. We know that the universe is suffused with a cosmic microwave background of photons that have an equivalent "temperature" of about 2.725 K. These photons are in the microwave part of the spectrum, which means they have fairly low energy. The energy of these photons is as low as it is because their wavelength has been stretched by a factor of about 1000 since they were last scattered, about 380,000 years after the big bang. This stretching is a result of the expansion of the universe itself.

Now consider a particle moving through this background at a very high velocity – such as a UHECR. According to special relativity, a photon observed from the reference frame of the fast-moving particle will have the same velocity (299,792,458 m/s) regardless of the particle's velocity. However, the wavelength of the photon will appear to be shortened by a very large factor, depending on the particle velocity. This is equivalent to a "blue shift", as if the source of the photon were moving towards the particle at the same velocity.

The net result is that the energy carried by the photon – as perceived by a UHECR – will be extremely high. High enough to destroy the particle (or at least consume a substantial portion of its energy). Hence UHECRs with energies above a certain limit should be observed very infrequently. This limit is called the GZK cutoff. It is about 6×1019 eV.

(In fact, there is some low probability of UHECRs with higher energy being observed, if the UHECR happened to come from a source very close to us, so that it was unlikely to interact with a CMB photon. Credible events attributable to UHECRs having energies as high as 3×1020 eV have been reported.)

It is rather important that the GZK cutoff be verified, since it rests on the assumption that special relativity is valid. If the GZK cutoff were not observed, either our understanding of cosmic rays would be very flawed, or else special relativity itself would be threatened. The latter would require a massive rethinking of contemporary physics – something that wouldn't be attempted without extremely good reason.

Fortunately, evidence for the GZK cutoff continues to grow:

Do cosmic rays get bogged down in the cosmos? (7/8/08)
Physicists are closer to understanding how ultrahigh-energy cosmic rays make their way to Earth thanks to new measurements made at the Pierre Auger Observatory in Argentina. The study shows that the number of such cosmic rays reaching Earth drops off rapidly for rays with energies of more than about 4×1019 eV.

The observations are consistent with a 40-year-old theory that ultrahigh-energy cosmic rays cannot travel very far through the universe without losing energy as they scatter off the cosmic microwave background.

This is not the first confirmation of the GZK cutoff since last November. In March, a similar conclusion was reached based on observations from a completely different cosmic ray detection facility – the University of Utah’s High-Resolution Fly’s Eye cosmic ray observatory. See here, here.

Further reading:

Observation of the suppression of the flux of cosmic rays above 4x10^19eV – technical paper at the arXiv reporting the result discussed above

Tags: , ,

Labels: , ,

Sunday, June 01, 2008

GLAST and gamma-ray astronomy

According to the present schedule, the GLAST gamma-ray telescope mission will be launched next week, on June 5, around noon EDT. If you're reading this before then, you can expect to find quite a bit of news coverage around that date. It's actually kind of a big deal, and I'll summarize some of the reasons for that here.

To begin with, you can find background information on the mission from NASA here and here.

In addition, there have been some good summaries already in science-oriented publications:

You can find good explanations of exactly what GLAST is in most of the above references.

What I'll summarize here are just some of the main objects and phenomena that GLAST is expected to help observe and study.

Gamma-ray bursts
Gamma-ray bursts (GRBs) have been discussed here several times, such as here and here. It is generally agreed that there are several different events that can cause a GRB, and a fair amount is known about the phenomenon already. For instance, the subtype known as a "long" GRB is thought to result from supernova explosions in which a high-energy jet of particles and radiation is emitted in a narrow beam that happens to point in our direction. But as yet we haven't measured the complete spectrum of energy from a GRB of any type. This spectrum can range from a few KeV to hundreds of GeV, and knowing it in detail would help determine the nature of the associated event much more accurately.

Dark matter
The visible universe that consists of luminous objects like stars and galaxies is composed of baryonic matter (mainly protons and helium nuclei). There may be at least as much baryonic matter in the form of diffuse gas that we cannot see. (Recent observations here and here.)

Yet it is essentially certain that the universe actually contains about four times as much matter that we can't detect at all (except by its gravitational effects) as all that baryonic matter put together. This is the dark matter. There are many theories about what this dark matter consists of, but in one of the main classes of theories, the matter consists of "weakly-interacting massive particles" (WIMPs). In most such theories, WIMPs can annihilate each other in pairs, giving off copious quantities of gamma-rays (among other things).

If some such theory accounts for a portion of the dark matter, GLAST will make it possible to estimate properties of WIMPs (e. g. their mass) by observing gamma-rays from locations where dark matter is expected to be concentrated, such as in the center of the Milky Way. This kind of information will complement and help corroborate observations made at the Large Hadron Collider, in which some kinds of WIMPs (if they exist at all) are expected to be created.

Solar gamma-rays
Although our Sun is a relatively weak source of gamma-rays compared to almost everything else mentioned here (even weaker than the Moon, where gamma-rays are produced when cosmic rays strike the surface), several solar events, such as flares and coronal mass ejections do produce gamma-rays. So GLAST will help us better understand solar events of this kind.

Supernova remnants
A large class of gamma-ray bursts are associated with the initial blast of a supernova event, and the gamma-rays from such bursts subside in a matter of minutes. But other gamma-rays may originate by other mechanisms from the supernova remnant long after the original event. Gamma-rays are thought to be produced in such remnants due to particles being accelerated to high energies in the blast and subsequently generating shock waves in the interstellar medium. The shock waves themselves are reasonably well understood, but how the particles are actually accelerated by the supernova blast needs much more elucidation, which GLAST can provide.

Pulsars
Another part of the remnant left over after a supernova is either a stellar-mass black hole, or else a rapidly spinning neutron star. Such a neutron star will produce jets of electromagnetic energy, usually at radio frequencies, and when the Earth is lined up with the jet the object is called a pulsar. These also emit gamma-rays. Since neutron stars are extremely small and dense, they have intense magnetic fields near their surface, and the fields reveal a lot about the nature of matter in the neutron star. The strong fields also convert gamma-rays into electron-positron pairs, so the overall gamma-ray spectrum can give us information about the object's magnetic fields, and about surface features that cause gamma-ray emission.

Supermassive black holes, active galactic nuclei, quasars, blazars
Supermassive black holes are thought to exist at the centers of most or all galaxies. We can estimate that they have masses ranging from 105 to 1010 solar masses, yet there is a great deal more we would like to know about them, such as the process by which they form. (See here.) Most supermassive black holes are thought to be circled by an accretion disk of matter which has been attracted by the object's extreme gravity.

Depending on the amount of matter in the disk, large amounts of energy may be released as the matter falls into the black hole. Our own Milky Way has a smallish object of this sort, with a correspondingly small accretion disk. But if there is much more mass in the disk, one has a bright object called an active galactic nucleus (AGN). AGNs were more plentiful in the early days of the universe, before most of the available nearby matter had been consumed by the black hole, and especially active objects of this kind, usually at great distances, are called quasars.

Like supernovae (from which stellar-mass black holes or neutron stars are formed), supermassive black holes may emit powerful relativistic jets of particles and energy. If such a jet is pointed in our direction, we see an especially bright source, called a blazar. Most of the emitted electromagnetic energy from all these objects is in the gamma-ray part of the spectrum.

So one of the main objectives of GLAST is to measure how this spectrum varies over time, in order to get a better understanding of what is actually going on. For instance, there could be additional confirmation of a model of the relativistic jets as described in this recent research, and perhaps evidence as to whether the particles in the jets are protons or electrons.

Cosmic ray origins
As discussed in detail here, we are finally beginning to clear away some of the mystery surrounding the most energetic ultra-high-energy cosmic rays (UHECRs). But there's a lot more we'd like to know, such as whether these rays are mostly made up of relativistic protons, and what sort of process creates them in the first place. Gamma-rays are produced when UHECRs interact with interstellar gas and dust, so GLAST may be able to give us more information about UHECRs.

Primordial black holes
It is generally suspected that many small black holes (with masses covering a wide range, but much less than the mass of a star) could have been produced in the big bang. These are called primordial black holes. Their existence hasn't yet been confirmed. But Stephen Hawking made a strong case that any black hole will slowly emit weak electromagnetic radiation, due to quantum effects and called Hawking radiation. This radiation should be too weak to be directly observable. However, small primordial black holes should eventually evaporate completely by this process, and at the end disintegrate in a burst of gamma-rays. This is all rather conjectural, but if it happens, it may contribute to a continuous gamma-ray background that can be detected.

Cosmic gamma-ray background
In addition to discrete gamma-ray sources such as GRBs and supernova remnants, there is a diffuse background of gamma-ray photons, much like the cosmic microwave background (CMB), only vastly more energetic. Some of this background may be due to UHECRs, very distant and very powerful (TeV range) gamma-ray sources, or primordial black holes. But who knows what other kinds of sources might be out there? There will probably be some surprises, as well as a lot of useful information to be deduced, just as happened with the CMB.

Possible breakdowns of special relativity
Heading even further into speculative territory, various theorists of quantum gravity have proposed that even special relativity (as well as general relativity too) may break down under various conditions. For example, the speed of light might not be an exact constant, but might instead vary by a slight amount according to the energy carried by individual photons.

Thus not all gamma-ray photons from a GRB would need arrive at precisely the same time, and so any pattern in this radiation would be shifted very slightly depending on what part of the gamma-ray spectrum is observed. Even if the shift is as little as 1/1000 of a second (for photons that may have been travelling for billions of years), GLAST should be sensitive enough to detect the shift. That would certainly be quite a surprise if found.


Further reading:

GLAST Science Writer's Guide – An extremely informative 47-page document (PDF), with detailed descriptions of the relevant science, a glossary, and additional links

Simona Murgia: Dark Matter searches with GLAST – Blog posting that discusses the relevance of GLAST for dark matter searches

Tags: , , , , , , ,

Labels: , , , , , , , ,

Monday, December 10, 2007

Ultra-high energy cosmic rays.

I'm just trying to catch up on interesting science news of the past few weeks, and what happens? I pick a topic that seems to have had significant new developments and is also straightforward enough for a relatively brief post. But instead of something I can do justice to with just a handful of links to good reports (so I don't need to do that much work), I find myself in a brier patch. Frustrating.

The general topics is cosmic rays. The phenomenon of radioactivity was discovered in 1896 by Henri Becquerel. At first the only known source of radioactivity was certain naturally occurring radioactive elements in the Earth itself. But in 1912 Victor Hess deduced that there must be another source of radioactivity outside the Earth's atmosphere. These came to be known as cosmic rays (as opposed to other kinds of "rays", such as X-rays, alpha rays, beta rays, and gamma rays, which have known terrestrial sources). Hess received a Nobel Prize in physics in 1936 for his discovery, indicating that by then scientists generally agreed the phenomenon was genuine, and interesting.

Given that, the next questions had to be: what do cosmic rays consist of, and how are they produced? Even today we are still in the process of answering those two questions, though we think the answers are pretty well known for all but the most energetic cosmic rays.

I'll discuss cases involving different energies in a moment, but first there are some basic distinctions. Now that we have spacecraft, we can in principle observe cosmic rays directly, though this hasn't actually been done systematically. (It turns out that the highest energy cosmic rays, which are still the least well understood, are too rare to be observable with non-terrestrial instruments of sufficient size.) At the Earth's surface we can't observe cosmic rays directly. Assuming cosmic rays are ordinary particles like electrons, protons, or atomic nuclei (and we've seen nothing to indicate otherwise), all we can see are showers of electrons and more exotic particles like muons. All the evidence indicates that these showers are the result of collisions between actual cosmic rays and molecules in the atmosphere.

There is an additional distinction that can be made between "primary" and "secondary" cosmic rays. Originally this distinction was between the particles we actually observe in showers ("secondary") and the ones ("primary") that cause the showers. The latter, of course, are the ones that need to be understood. But we now realize that the particles that enter our atmosphere may themselves be a result of collision between the "real" primary cosmic rays and other particles floating in interstellar space. Since we're concerned with what the particles are in their original form, it is those that are now usually called primary (or simply "cosmic rays" without further qualifiers), while everything else is secondary.

Obviously, the most important step in understanding (primary) cosmic rays is to figure out where they come from, and for that we would like to know the direction from which they enter our atmosphere. We know that some relatively low energy cosmic rays originate in the Sun ("solar cosmic rays"). Unfortunately, except for those and all but the most energetic other cosmic rays it is impossible to tell the direction they have come from. That's because the particles that could make up cosmic rays should have certain properties. Except for solar cosmic rays, the particles should be stable and not decay over time spans of (at least) many years. We can also rule out very light particles like neutrinos. Cosmic rays could be something totally exotic that's never been observed before, except in that case it's very likely they would not interact with ordinary matter – so they would not be capable of producing showers of secondary particles that we observe. Among particles currently known, then, that leaves only charged particles such as electrons, protons, and atomic nuclei.

However, unless a charged particle has extremely high energy, in excess of what has been observed for most (but not quite all) cosmic rays, its motion will be affected by our galaxy's magnetic fields, or even by the magnetic field of the Earth. We observe that almost all cosmic rays energetic enough not to be significantly affected by Earth's magnetic field appear to come from directions isotropically distributed over the sky. So we can't identify any particular spot from which most cosmic rays appear to originate, because our galaxy's magnetic fields have randomized their directions.

Very recent results strongly suggest that a few very rare cosmic rays ("ultra-high-energy cosmic rays", or UHECRs) do come from directions we can identify. We'll get to that shortly.

But first we need to talk about what sort of energies are actually involved. The most energetic UHECR ever observed had an energy of about 3×1020 eV (electron-volts). That is roughly the kinetic energy in a baseball moving at 96 km/hr. (I don't know about you, but I can't easily relate to energies expressed in terms of moving baseballs, tennis balls, or large hailstones. To me it's more meaningful to talk in terms of the energies that can be produced in the largest contemporary particle accelerators, about 1013 eV, or 10 TeV. That's more than 7 orders of magnitude, a factor of 10 million, less than the energy of some UHECRs.)

We cannot easily imagine mechanisms in "ordinary" objects (no more exotic than, say, a supernova remnant) that could on a sustained basis churn out charged particles with energies more than about 1018 eV. Up to that energy level we can envision mechanisms involving shock-wave acceleration in supernova shells. Beyond that, we would need something like some sort of quasar or active galactic nucleus (AGN). The good news is that there are very recent results relevant to both cases – cosmic rays with energies ≤ 1018 eV, as well as UHECRs.

Let's consider the lower energy case first. Here we are concerned primarily with cosmic rays originating in our own galaxy, so-called galactic cosmic rays. Many of these, of course, come from the sun, or other stars, or other equally common objects. So the ones of real interest are those having energies that call for much less common origins, yet short of things we don't have in our galaxy, such as AGNs.

The question here is whether there actually exist supernova remnants (for example) in which we can actually observe something going on that has enough energy to account for the most energetic galactic cosmic rays.

And the answer, now, is yes, we have observed such things. Just about a year ago it was reported that the Chandra X-ray Observatory had determined that the Cassiopeia A supernova remnant was accelerating electrons enough to account for all but the most energetic galactic cosmic rays. (We offered a Hubble optical image of Cassiopeia A here, and a a false color infrared image produced by the Spitzer Space Telescope here. There's an even more dramatic Spitzer image available here, and a false color image from Chandra itself here.) Here's the relevant press release:

Chandra Discovers Relativistic Pinball Machine
For the first time, astronomers have mapped the rate of acceleration of cosmic ray electrons in a supernova remnant. The new map shows that the electrons are being accelerated at close to the theoretically maximum rate. This discovery provides compelling evidence that supernova remnants are key sites for energizing charged particles.

We had a post about this here, which lists several other accounts of the discovery. (There's also news in that post about a possible extragalactic cosmic ray source.) Note that this does not say cosmic rays have actually been observed to come from Cassiopeia A – galactic magnetic fields make it unlikely to be able to prove cosmic rays come from very close to that direction. All we can say is that Cassiopeia A should be producing high-energy cosmic rays.

However, Cassiopeia A doesn't seem to be a source of the highest energy (galactic) cosmic rays we can envision coming from a supernova remnant. Fortunately, a much more recent result does provide such an example.

NASA: Major Step Toward Knowing Origin of Cosmic Rays
Since the 1960s scientists have pointed to supernova remnants -- the tattered, gaseous remains of supernovae -- as the breeding ground of most cosmic rays. These remnants expand into the surrounding interstellar gas, an energetic interaction that produces a shock front containing magnetic fields that can accelerate charged particles to enormous energies, producing cosmic rays.

According to theory, charged subatomic particles bounce like pinballs around the shock front. They pick up speed until they move nearly the speed of light. Last year, observations from NASA’s Chandra X-ray Observatory suggested that electrons are being accelerated rapidly (as fast as theory allows) to high energies in the supernova remnant Cassiopeia A.

Now, Yasunobu Uchiyama of the Japan Aerospace Exploration Agency (JAXA), and four colleagues, have observed the signature of the shock acceleration of electrons, and demonstrated that magnetic fields in supernova remnants are stronger than previously thought, and are thus fully capable of producing cosmic rays.

In a study published in the October 4, 2007, issue of the journal Nature, Uchiyama’s team used Chandra and JAXA’s Suzaku X-ray satellite to look at the northwest edge of supernova remnant RXJ1713.7-3946, located a few thousand light-years from Earth in the constellation Scorpius.

Up until this result, the problem has been a doubt that magnetic fields in supernova remnants are strong enough to accelerate particles to an energy of around 1018 eV. This doubt has been laid to rest by the observations of RXJ1713.7-3946. There it has been possible to estimate the strength of its magnetic fields.

The estimation is accomplished by Chandra observations of X-ray hot spots in the remnant. The hot spots represent synchrotron radiation given off by electrons accelerated to the highest velocities. Shock waves in the magnetic field produce the acceleration, and their velocity can be estimated at about 10 million km/hr. Such waves should give electrons a kinetic energy on the order of 1015 eV.

That's still not enough energy to account for the most energetic galactic cosmic rays, but protons (or heavier particles) accelerated to similar velocities could do the trick. Protons have the same charge as an electron (but of opposite sign). Since a proton has about 1836 times the mass of an electron, the kinetic energy of accelerated protons could reach 1018 eV, corresponding to the most energetic galactic cosmic rays. (A helium nucleus, with about 4 times the mass of a proton, could have even higher energy, of course.)

Synchrotron radiation from protons of this energy would be in the gamma-ray range, so they could not be observed by Chandra. However, there are suggestions that gamma-ray observations do confirm that the magnetic fields of RX J1713.7-3946 are strong enough to produce 1018 eV protons.

Again, as with Cassiopeia A, all this isn't saying we've observed 1018 eV cosmic rays produced by RX J1713.7-3946, only that it has magnetic fields strong enough to do the job.

Other reports of this research: here, here.

We're still left with the problem of explaining UHECRs. Since we can't imagine anything inside our own galaxy that could be energetic enough to produce UHECRs without being directly observable (and certainly we don't observe any such thing), the source must be outside the galaxy.

As the following recent note observes, there are a few possibilities.

Magnetic cocoons power energetic cosmic rays
[U]ltra-high-energy cosmic rays (UHECRs) – each packing the punch of a baseball – are an outstanding mystery. Although it is conceivable that they are produced near the Milky Way by the decay of super-heavy dark matter particles or by defects in space-time, the most likely sources are the most powerful objects in the universe – 'active' galaxies whose colossal black holes are devouring nearby matter, and gamma-ray bursts. These are far beyond our galaxy – and herein lies a very serious problem.

The problem is what is called the Greisen-Zatsepin-Kuzmin (GZK) limit. This limit results from the fact that protons (or heavier atomic nuclei) that have an energy more than about 6×1019 eV will interact with photons of the cosmic microwave background (CMB). The interaction destroys the cosmic ray particle and produces short-lived pions, which decay long before reaching Earth. For a UHECR the probability of an interaction is proportional to the distance between the Earth and the cosmic ray source.

The reason this occurs is that cosmic rays with this energy are moving at very close to the speed of light. From the point of view of the cosmic ray itself, a microwave photon is drastically blue-shifted, even though to an observer on Earth, a CMB photon has quite low energy. But for a cosmic ray moving fast enough, the CMB photon appears to be very energetic, and the threshold above which a pion-producing interaction can occur is for cosmic rays with energies above 4×1019 eV.

This diagram show the expected flux of cosmic rays as a function of their energy, assuming a power-law distribution. This is in fact what is observed. For example, cosmic rays with an energy of more than 1019 eV are observed at a rate of only 1 per km2 (of Earth surface) per year. So you need to observe over an area of many km2 simply to tally a reasonable number of the most energetic cosmic rays in a few years.

Because of the GZK effect, the flux of cosmic rays takes a sharp drop below the curve in the diagram right around 4×1019 eV. We still observe a very few cosmic rays with energies above that point, because if the cosmic ray originates from a source sufficiently close to Earth, there is still some nonzero probability it will not collide with a CMB photon. However, there is essentially no chance we will see a cosmic ray of more than 4×1019 eV if its souce is more than about 250 million light-years (Mly) from Earth.

As it turns out, this limit is actually a stroke of good fortune, because it means that in order to identify sources of UHECRs we need only consider objects within an Earth-centered sphere of radius 250 Mly. We can simply disregard objects that are farther away.

Another simplifying condition is that we don't need to bother with cosmic rays having an energy less than about 3×1019 eV, because the trajectories of such lower-energy cosmic rays are likely to have been deflected by our galaxy's magnetic field. We couldn't hope to identify the direction from which they came anyway. This is a useful simplification, since there is a larger variety of possible sources for the lower energy cosmic rays, and we would simply have too many possibilities to have a hope of correlating the observed directions with locations of particular source types. Furthermore, atomic nuclei larger than one proton will have more than one unit of charge, so they will also be deflected by the galaxy's magnetic field. And so we would not expect cosmic rays that don't consist of individual protons to have a correlation with the location of specific source objects.

Given all that, it's easy to understand and appreciate the result that was just announced early in November. The result comes from a large team working at the Pierre Auger Observatory in Argentina. The result, in a nutshell, is that out of 15 cosmic ray events with energy more than 6×1019 eV counted since 2004, 12 came from a direction that was within 3.1° of a known active galactic nucleus (AGN) within 250 Mly of Earth. It is calculated that the probability of this correlation occurring by chance is only about 1 in 1000 if the flux were isotropic.

What about the other 3 (of 15) events? They might have been cosmic rays that consisted of atomic nuclei heavier than a proton, and hence were deflected by galactic magnetic fields. However, these anomalous events were observed near the galactic plane, so their source could have been an AGN we cannot see because of dust in the galactic plane.

It should be mentioned that Auger is nothing like a typical optical observatory. Instead, it consists of a large number of instruments spread over an area of 3000 km2, which is about the size of Rhode Island. Yet since observations began in 2004, only about 80 events with energy more than 4×1019 eV were tallied, and there were only 27 with energy more than 5.7×1019 eV (a rate of about 1 per 4 km2 per century), so you can see how rapidly the numbers drop off in this range. Small wonder that cosmic ray astronomers now want to have an even larger observatory built, as well as to continue observations over enough years to reduce the possibility that correlations are due to chance.

Even so, the present results are generally considered to be pretty important – enough, anyway, to have become the cover story of the November 9 issue of Science. And this is even though the result is "only" a statistical correlation between directions of events and known AGNs. It's much too soon to say something like N events have been observed very close to a specific AGN. Also still left open is the construction of a model for exactly how UHECRs are produced in an AGN, let alone the validation of the model in a particular case (as has been done with lower energy cosmic rays and supernova remnants).

It's also only fair to note that objections to the Auger conclusions have been raised – see here, and in some of the references below.

However, we now have a lot better information about UHECRs than we had before.

More information:



Blog articles:



Tags: , , ,

Labels: , , ,

Monday, November 27, 2006

High energy cosmic rays

Astrophysicists have wondered for a long time where cosmic rays come from, especially the most energetic ones.

A couple of recent research reports identify two different sources. The first of these is our old friend, Cassiopeia A:

Chandra discovers relativistic pinball machine

New clues about the origins of cosmic rays, mysterious high-energy particles that bombard the Earth, have been revealed using NASA's Chandra X-ray Observatory. An extraordinarily detailed image of the remains of an exploded star provides crucial insight into the generation of cosmic rays.

For the first time, astronomers have mapped the rate of acceleration of cosmic ray electrons in a supernova remnant. The new map shows that the electrons are being accelerated at close to the theoretically maximum rate. This discovery provides compelling evidence that supernova remnants are key sites for energizing charged particles.

This situation is described as a "pinball machine", because the electrons making up the cosmic rays (in this case) are accelerated by being bounced back and forth between magnetic fields and the expanding shock wave generated by the supernova:
"The electrons pick up speed each time they bounce across the shock front, like they're in a relativistic pinball machine," said team member Glenn Allen of the Massachusetts Institute of Technology (MIT), Cambridge. "The magnetic fields are like the bumpers, and the shock is like a flipper."

There are other accounts of this research here, here, and here.

Meanwhile, in another part of the universe, another team has identified a completely different source:

'Big bang gas' in cosmic particle-accelerator shock
Giant shockwaves around a distant cluster of galaxies could be generating some of the mysterious cosmic rays that strike Earth. They could also give us a clue as to why the universe is threaded with magnetic fields.

The cluster, called Abell 3376, is a swarm of galaxies about 600 million light years away. On either side of this swarm are two huge arc-like structures, each about 3 million light years across, that are sending out radio waves.

However, interestingly enough, apparently it is still the combination of magnetic fields and shock waves that is responsible for the particle acceleration – even though Cassiopeia A is 10,000 light years distant from us, while Abell 3376 is 60,000 times further away. The latter is also several million light years across, while Cassiopeia A is only about 10 light years wide. So there remains a major mystery about what produced such huge shock waves in Abell 3376:
Then what created the shocks in the first place? There are two possibilities. It may be that roughly a billion years ago, two clusters crashed into one another to form Abell 3376. The collision could have sparked a shockwave that travelled out through the cluster gas, whose remnants we are now seeing.

But there is a more intriguing possibility. Primordial gas, untouched since the big bang, should be constantly pouring into all galaxy clusters. Computer simulations of the cosmos show that gravity tends to pull the gas into stringy structures called filaments.

Abell 3376 could be threaded on one such filament, and the two shockwaves could mark where this cool ancient gas smacks into the super-hot gas of the cluster.

Other accounts of this research: here, here.


Tags: , ,

Labels: , , ,